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Presented is a new class of numerical algorithms for computer simulation of low frequency 
(w < %e , ~3 electromagnetic and electrostatic phenomena in magnetized plasma. 
Maxwell’s equations are solved in the limits of negligible transverse displacement current 
(Darwin’s model) and quasineutrality. The numerical models treat electrons as a massless 
fluid and ions as particles. The numerical stability of the algorithms is investigated analytic- 
ally and verified by computer experiments. The numerical algorithms, in both linearized 
and fully nonlinear forms, are successfully applied to the study of linear microinstabilities 
and the efficiency of injected small amplitude currents in causing the local reduction of the 
external magnetic field in magnetically confined plasmas. 

1. INTRODUCTION 

For many years there has been considerable motivation for generating numerical 
algorithms for the purpose of simulating collective plasma behavior on time scales 
which are long compared to the electron plasma wave and electron cyclotron periods. 
In magnetically confined plasmas of interest for controlled fusion, the characteristic 
frequencies and rates associated with radiation and relativistic effects are commonly 
many orders of magnitude larger than the frequencies of important microinstabilities 
which determine the efficiencies of particle and energy confinement. Furthermore, 
the fueling and heating of fusion plasmas with either neutral beam injection or electro- 
magnetic waves typically occur on the long time scales governing confinement. To 
economically study the influence of these slow processes on plasma equilibrium via 
computer simulation requires techniques which dispense with high frequency pheno- 
mena without compromising the validity and accuracy of the simulated physics at 
low frequency. 

In our studies we wish to correctly describe the physics of collective plasma behavior 
in a regime of frequencies much less than the electron cyclotron frequency w,, and 
plasma frequency w,, . We therefore neglect radiation and relativistic effects and 
solve Maxwell’s equations in the Darwin approximation [l-2]. The transverse com- 
ponent of the displacement current is set equal to zero, and effects which are second 
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order in the particle velocities over the speed of light are ignored. Furthermore, we 
make the assumption of quasineutrality: only long wavelength, low frequency phe- 
nomena with negligible associated space charge are allowed. We make these approxi- 
mations and assumptions in the same manner and spirit as they are made in analytical 
theory. Our simulations are therefore only models of a restricted class of collective 
plasma phenomena. 

Electrons are simulated as a fluid and ions as particles. When simulating with 
particles which are necessarily limited in number, the fluctuation levels for charge 
and current densities are generally much higher in simulation than in a real plasma [3]. 
By suppressing the normal modes associated with high frequency electromagnetic 
and electrostatic waves, we avoid the potential difficulty of thermally excited high 
frequency and short wavelength modes artifically distorting or obscuring the impor- 
tant physics at lower frequency and longer wavelength. 

There has recently been considerable interest in hybrid (fluid and particle) and 
nonradiative electromagnetic simulations. An excellent review article has been 
written by Nielson and Lewis [4] on nonradiative electromagnetic particle simulation 
codes. Examples of prior work on nonradiative electromagnetic models which include 
electrostatic phenomena are the one-dimensional sheet model of Hasegawa and 
Okuda [5] and the one-dimensional finite-sized particle model of Haber et al. [6]. 
Busnardo-Neto et al. [7] have produced one- and two-dimensional, magnetostatic, 
finite-sized-particle codes. All of these codes are fully electrostatic, i.e., they solve 
Poisson’s equation for the electrostatic potential. 

More recently Nielson et al. [8] have constructed a quasineutral hybrid model for 
nonradiative electromagnetic simulation in several dimensions. In their model the 
transverse and longitudinal fields are constructed from iterative solution of coupled 
elliptic equations involving the self-consistent moments of the ion velocity distribution 
function and similar quantities characterizing the electron fluid. Quasineutrality 
requires the replacement of Poisson’s equation with some other constitutive relation 
for the electrostatic field, in this case a generalized Ohm’s law in which electron 
inertia effects are retained in the divergence-free part of the equation. 

Our own work most closely resembles that of Nielson, Winske, and Hewett. 
However, we choose to examine phenomena generally at lower frequency than the 
lower hybrid frequency and therefore neglect electron inertia altogether. Our numerical 
differencing scheme differs dramatically. Instead of a generalized Ohm’s law we 
utilize the equation of motion for the electron fluid. We present new multidimensional 
algorithms which are fairly direct, time-centered, and stable. Friedman et al. [9] have 
used yet another hybrid simulation model to study field-reversing proton rings in an 
axisymmetric cylindrical configuration. 

Many previous researchers 14-71 have emphasized that direct numerical solution of 
Maxwell’s equations in the Darwin approximation and the particle equations of 
motion can lead to violent numerical instability. The nonradiative approximation 
eliminates retardation effects in the electromagnetic fields and changes the system of 
equations from hyperbolic to elliptic [4]. In some sense the speed of light becomes 
infinite, and there is instantaneous action at a distance in the electromagnetic fields. 
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Numerical difficulties arise from the time derivative of the magnetic field in Faraday’s 
law, V x E = -c-l8B/&. These problems have generally caused nonradiative codes 
to be much more complex than fully electromagnetic ones, and make generalization 
from one to two dimensions nontrivial. In view of these considerations our algorithms 
are remarkably simple. 

Because of the introductory nature of this paper, we have restricted the applications 
presented here to linear phenomena. This has allowed us to compare the results of 
simulations using both linearized and fully nonlinear algorithms with linear analytical 
theory in all cases. However, to establish the real value of the new algorithms intro- 
duced here, simulations of fully nonlinear phenomena must be conducted. These are 
in progress and will be presented in future publications. 

We have successfully applied our simulation models to the studies of small 
amplitude, low frequency waves (w - w,.) driven unstable by non-Maxwellian 
velocity distribution functions or plasma gradients, e.g., unstable ion Bernstein 
waves [lo], Alfvtn-ion-cyclotron waves [ll], and drift-cyclotron-loss-cone modes 
[12, 131. We have also studied the effects of small amplitude injected currents on 
magnetic field cancellation, with the eventual goal of investigating field-reversed 
configurations. Although most of these examples are of particular interest to the 
study of fusion plasmas confined by magnetic mirrors, our simulation models can 
be more generally applied. In all cases however, use of these models demands that the 
phenomena to be studied are in fact physically decoupled from the physics we have 
omitted: the plasma parameters, frequencies, and wavelengths of the collective 
behavior simulated must be consistent with the neglect of radiation, charge separa- 
tion, and electron inertia. 

The paper is organized as follows. Section 2 introduces algorithms for use in one or 
more dimensions. An important distinction arises concerning whether or not the 
conservation of canonical momentum in a particular direction is utilized. In this 
section we also review the concept of linearized particle codes. Section 3 presents an 
analysis of the numerical stability of the various algorithms. We calculate the spatial 
and temporal mesh corrections to the linear dispersion relations describing wave 
propagation in a homogeneous plasma. Section 4 describes the linearized simulation 
of three microinstabilities: ion Bernstein waves driven unstable by a non-Maxwellian 
velocity distribution function (Dory-Guest-Harris instability), drift-cyclotron-loss- 
cone instability in the local approximation, and the Alfven-ion-cyclotron instability. 
The use of injected currents to produce local magnetic field cancellation in high-p 
plasmas is investigated and discussed in Section 5. Section 6 concludes the paper with 
a brief summary and offers an overview of expected applications and future extensions 
of these simulation models. 

2. SIMULATION MODELS 

In this section we introduce a class of new algorithms for performing hybrid 
simulations of quasineutral, nonradiative electrostatic and electromagnetic 
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phenomena in magnetized plasma. The first algorithm we introduce makes use of 
conservation of canonical momentum and special features peculiar to the case of 
one-dimensional spatial variation. For the more general case in which canonical 
momentum is not necessarily conserved, a second closely related simulation model 
is offered which allows for spatial variation in several dimensions. These algorithms 
are also implemented in linearized form in which the current and charge density 
source terms in Maxwell’s equations and the equations of motion for the charged 
particles are linearized. We thus consider linearized and fully nonlinear versions of 
our new algorithms. 

In Coulomb gauge (V * A = 0) Ampere’s law becomes in the Darwin approximation 

.--VzA = &c-1Jf. (1) 

A superscript t(l) designates the divergence (curl)-free part of a vector quantity. The 
magnetic field is given by B = V x A. A statement of quasineutrality can be given 
by taking the difference of the electron and ion continuity equations and setting 
ni = II, to obtain 

V * (Ji + J,) = 0. (2) 

If the normal component of (Ji + J$ vanishes along the system boundaries (isolated 
plasma), then (Ji + J# vanishes everywhere in the plasma as a consequence of Eq. (2) 
Equation (1) becomes -V2A = h&J, and separation of the currents into longi- 
tudinal and transverse parts is unnecessary. The transverse electric field and hence 
inductive effects are derived from Faraday’s law, 

Et = -c-l iiA/St. (3) 

Equations (1) and (3) only describe the transverse (electromagnetic) fields. Pres- 
criptions are still required for the electrostatic field Ez and the motions of the electrons 
and ions in order to construct charge and current density source terms. We consider 
a simple fluid model for the electrons, 

n,m,[(a/at) + V, . V] V, = n,q,(E + V, x Bc-l) + n,n~(V, - V,) vei - V * I’, , (4) 

where V, are the fluid velocities of each species, v,$ is the classical electron-ion 
collision frequency, and P, is the electron fluid pressure tensor. We now make an 
approximation appropriate for long wavelength, low frequency, quasineutral pheno- 
mena: we ignore electron polarization effects and inertia on the 1.h.s. of Eq. (4). We 
solve Eq. (4) for the electric field using V, = J,/qgz, , nb m IZ~ , and from Eq. (I), 
J, = -(c/47) VzA - J< : 

E = -,;;c VA x 0,; - (n,qic)-’ Ji x B - (niqi)-’ V . P, - I/,+& V’A, (5) 
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where wzS = 4rn,e2/m, and wCi = (qJmg)B. The electric field E must be separated 
into longitudinal and transverse parts, which in general requires solution of a Poisson’s 
equation. An appropriate equation of state must be employed for P, . The system of 
equations is then closed by integrating equations of motion for particle ions from 
whose positions and velocities ni and Ji are constructed: 

dxldt = v (W 

and 

dv/dt = (qJmJ(E + v x Bc-l). (6b) 

For the sake of simplicity in the present discussion, we take vei = V . P, = 0 and 
the vacuum magnetic field B0 # 0 to be uniform in x. In this limit E is perpendicular 
to B as determined by Eq. (5). 

FIG. 1. One-dimensional slab coordinate system with the principal field and particle quantities 
shown and the direction of wave propagation indicated by k. 

The finite-difference realization of these equations is particularly simple in one 
dimension. Figure 1 depicts the coordinate system for a one-dimensional simulation 
in which the y component of canonical momentum is conserved: P, = m,vy + 
q&-l = constant. The direction of spatial variation is x, and there are velocities 
v, and o, . There are a longitudinal electric field E, , a transverse electric field Ev , and 
vector potential A, . The vacuum and self-magnetic fields point in the z direction. It 
is the geometrical decoupling of the transverse and longitudinal vector fields that 
generally makes one-dimensional versions of Darwin models especially simple. 
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In finite-difference form the model equations are 

E,(xJn = - [4mz(xj)” e]-’ l&(x$ {D2[A,(xj)“] + 477~1 J,(xJ”}, 

A JXj)ll’ l L A JXj)” - At [Jz(Xj) Bz(xj)/en(xj)ln-r112, 

[B,(Xj), ?Z(Xj)ln’l” = *[Bag + Bz(Xj)“+l], $[ll(Xj)n + lZ(X.Jn+l]p 

B,(xJn = Dl[A,(x,)“] + B, 

for the fields, and 

PZ(Xj)n z C S(Xj - Xin)y 
z 

Jz(Xjy+l ‘2 1-g +[S(Xj - Xy+‘) + S(Xj - Xi”)] ev,;“’ 
J&G’ S(xj - xin) ect,i 

(74 

(7b) 

(7c) 

(74 

@a) 

@b) 

n+1 
.O z'Y,i - LY.2 = 7 (e/mc)[S(x," - xJ A,(x,)O - S(xr'l - xj) Av(xJn+' 

+ (xi" - x;+y II,], (84 

n+112 
Vz,i - vz;"' = 1 (e/m) 7j At S(x," - xi)[E,(xj) + v~,~B,(~J c-lln (84 

j 

x;+l = xi9 + 7l At L$+‘~’ (se) 

for the ion sources, where xj are the grid locations, S(Xi - xj) is the particle shape and 
grid interpolation factor, q is a correction factor discussed in the next section, and 
D1 and D2 are difference operators corresponding to first and second spatial deriva- 
tives. Implicit in Eqs. (7) and (8) is that the currents, density, and velocities are those 
of the ions. The superscripts involving “n” denote time levels. The field equations are 
partially implicit as a result of the time averaging of the magnetic field in Eq. (7~) and 
its use in Eq. (7b). Solution of Eqs. (7b), (7~) and (7d) for A,(Q+l is simply per- 
formed by tridiagonal matrix inversion. 

For the simulations with a spatial grid discussed in this paper we have used 
W(xJ = [f(xj+d - f~x~-d/Wx) and D2f(xJ = [fh+J - 2fCd + f(x~-l)llAx29 
and have employed a cloud-in-cell model and linear interpolation in evaluating 
S(X - xj). Care must be exercised in taking very accurate first and second derivatives 
of the vector potential and in using smooth particle shapes, because the vector poten- 
tial is constructed from particle information without benefit of solving a Poisson 
equation. We are currently investigating the consequences of various particle shapes 
and difference operators. 

Solution of Eqs. (7) and (8) requires specification of boundary conditions. Lost by 
our models are the physical effects associated with a plasma’s collisionless skin-depth 
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C/W,, and Debye sheath. Since the assumption of quasineutrality and the neglect of 
radiation must necessarily render boundaties somewhat unphysical, we must guarantee 
that our boundary conditions at least imitate in some crude but reasonable way the 
actual physics. In any case, boundary conditions should be used which do not break 
the self-consistency of the numerical solution of the model equations and which do 
not cause the simulations to be dominated by boundary phenomena. The simplest 
boundary condition to implement is that of periodicity. When an ion leaves the 
system from one side, its motion is periodically continued on the other side. The 

,, 

electric and magnetic fields are also periodic to assure self-consistency. To replace the 
boundary condition that Jz * fi = 0 which was assumed earlier, we use (Jz) = -(c/4~) 
(d/dt) (Ez) = 0, where the brackets indicate the spatial average. Therefore, the 
implicit fluid electron current is periodic; and its longitudinal part cancels the longi- 
tudinal part of the ion current everywhere. The simulation plasma is considered to be 
infinite in extent, but periodic over a finite length. 

‘L. rGuard cell ="sheath" 

q = TX;; = E.; = 0 

FIG. 2. Boundary conditions for simulation of a finite plasma bounded by a conducting wall. 
At the surface of the wall the plasma currents J, identically vanish because of the presence of a 
particle-reflecting “sheath.” 

Other possible choices of consistent boundary conditions exist. Figure 2 shows one 
such alternative which we have successfully used. Here the plasma is bounded by a 
“sheath” of width equal to one grid-cell and a conducting wall. Ions are presumed to 
be elastically reflected by this hypothetical sheath. Since there are no plasma charges 
or currents in the cell nearest the wall, the electrostatic and magnetostatic self-fields 
of the plasma can be set equal to zero at the wall. The plasma is isolated. Within the 
plasma and up to the edge of the sheath, all sources and fields are otherwise calculated 
according to Eqs. (7) and (8). At the wall A = J = Jt = Jz = 0; Jz * fi = 0 is clearly 
satisfied, and elsewhere Jez = -Jiz. 
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The extension of the foregoing one-dimensional, canonical-momentum-conserving 
algorithm to higher dimensions is not straight-forward. Difficulties arise in trying to 
time-center all the equations without introducing spurious effects at a frequency 
related to the sampling rate w = r/At, a common difficulty of “leap-frog” methods. 
For purposes of simulating a more general class of situations, we wish to relax the 
constraint that canonical momentum be conserved in any direction. We therefore 
formulate a multidimensional algorithm which is time-centered and explicit, and 
makes no use of the conservation of canonical momentum. 

Maxwell’s equations are again solved in the nonradiative and quasineutral limits 
with no electron polarization effects. The new scheme is given as follows: 

+(E”+l + E”) = [-c&-:c V’A x wci - (net)-’ J x B - (ne)-’ V . P, 

- v,~w;:c V2A]n+112, Pa) 

(Et = E - Ez)n, Pb) 
AntlIZ = An-112 - c At Et” 3 

Bn+W = V x An+V + B, , B” = &(B”+W + BW2) 

?9c) 

(94 

for the fields, and 

FZ(Xj)% = 1 S(Xj - Xin), (104 

nn+lP = =$(n" + n"+l), 
(1%) 

JW 73+1/2 = T *[qx, - XT”) + S(xj - xi”)] ev;+l”, (104 

v;+l12 - v;-112 = 7 (e/m) At S(xT - xj)[E(xj)” + $(vT+~‘~ + v;-~‘~) x B(x,)‘” c-l], 
(1W 

,;+I _ Xin = At ,;+l12 We) 

for the ion density, current, velocities and positions. Equation (10d) is solved for 
vr+lj2 by use of Boris’ method [15]. 

In Eq. (9) the spatial mesh and the various difference operators approximating 
V2, V, V x , and V. must be consistently defined. To guarantee that gauge properties 
are preserved by the numerical scheme, the difference operators should be constructed 
so that V . V x A E 0 and V x 04 = 0 to the order of the computer round-off 
error [8, 161. The separation of the electric field into longitudinal and transverse 
components requires in general the solution of a Poisson’s equation for the electro- 
static potential with the source term given by V * E, except for the one-dimensional 
case where these components are geometrically decoupled. For many systems use of a 
fast Fourier transform is especially conveneient for calculating Et and El: 

Et = E - c k(k 3 E,) k-2 exp(ik * x) + C.C. 
k 
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Appendix 1 considers a variation of the leap-frog algorithm which deals with E and B 
directly and dispenses with A and the need to separate Et and El. 

We show in the next section that this multidimensional algorithm exhibits oscilla- 
tions at frequency w = n/At. Because of the structure of Eq. (9a) we refer to this 
algorithm as the leap-frog method. A high frequency oscillation is a typical difficulty 
of leap-frog schemes. For illustrative purposes we introduce an implicit version of the 
leap-frog algorithm. Equation (9a) is replaced by 

E” = &[-wiFc V’A x oCi - (net)-’ J x B - (ne))’ V * P, - v,~w~~c V2A]“-“” 

+ 24 ln+1’2, 

where the square brackets on the r.h.s. contain the same quantities but at different 
time levels. The rest of the implicit algorithm is as given by Eqs. (9b)-(9d) and (10). 
Due to the role of the particle quantities in the implicit relations for the electric and 
magnetic fields, this algorithm is not practical for actual computer implementation. 
H&ever, the scheme is conceptually useful because of its good stability properties 
and elimination of all leap-frog difficulties. These advantages of the implicit method 
motivate yet another algorithm, which has been implemented. 

A predictor-corrector version of the leap-frog algorithm set forth in Eqs. (9) and 
(10) offers an attractive compromise between the leap-frog and implicit schemes. 
Equation (9a) is used as a predictor of the electric field, E$!& . Eqs. (9b)-(1Oe) then 
establish predicted values of A, vi , and J at iz + 312 as well as xi and ion density n at 
IZ + 2. The electric field at y1 + 1 is then corrected by use of 

E n+1 __ 1 4 corr - 2 ln+1’2 + $1 I;&%“, (11) 

where the brackets contain the same quantities as those in Eq. (9a) evaluated at the 
appropriate time levels. The corrected electric field is then used to calculate new values 
of A, vi , and J at n + 3/2, and xi and IZ at n + 2. Further corrector iterations can be 
performed by replacing the predictor obtained values in the second bracket appearing 
in Eq. (11) with the previously obtained corrected values. 

We have implemented all of the foregoing algorithms except for the implicit scheme 
in either fully nonlinear or linearized forms. The concept and application of linearized 
particle codes have been discussed in Refs. [17, 181. Linearized codes analytically 
separate field and source equations into equations for quantities which are zero and 
first order in a perturbed quantity, e.g., a small amplitude perturbation of an equili- 
brium electric or magnetic field. The numerical solution of the linearized equations 
proceeds as is outlined in the preceding for a fully nonlinear code with some important 
exceptions. In a linearized code one is free to follow the linear evolution of a single 
Fourier mode, provided that the system is infinite and uniform. In this case the 
spatial grid and the associated numerical effects can be eliminated. Since nonlinear 
effects are precluded, the linear frequency and growth or damping of a perticular 
Fourier mode can be observed over a very long time period and therefore measured 
quite accurately. Linearized codes are useful for testing and calibrating basic numerical 
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algorithms because they ease the direct comparison of simulation results with linear 
analytical theory. These codes are also being currently used to study the linear stability 
of complex equilibria which are intractable to analytical treatment, for example 
equilibria in which finite plasma and Larmor radius effects are important. 

3. NUMERICAL STABILITY ANALYSIS 

To determine the numerical stability properties of the various algorithms introduced 
we analyze the linear dispersion relations describing the propagation of small am- 
plitude waves, including effects due to finite-differencing and finite-sized particles. 
We begin by considering the simple case of a cold plasma for which we establish the 
conditions for the stable propagation of compressional AlfvCn waves. The relative 
simplicity of the physics of wave propagation perpendicular to a uniform magnetic 
field in cold homogeneous plasma allows easy clarification of the differences between 
the numerical methods. Analytical theory is presented for our algorithms r&d, 
where possible, theory is compared with numerical simulations. This section is 
concluded with an analysis applied to the one-dimensional, canonical momentum 
conserving algorithm for the more general case of a warm plasma. 

We begin by considering the one-dimensional scheme which assumes conservation 
of canonical y momentum. Finite Fourier transforms are represented as follows: 

(E, , A, ,...) = (8, , A, ,...) exp(iwt + ikx) + C.C. 

The Fourier transformed difference operators for the standard centered two-point and 
three-point operators are given by fil = ik sin(k dx)/(k dx) and B2 = -P = 
-k2 sin2(k dx/2)/(k d~/2)~. Because the Fourier transformed shape factor using 
linear weighting, s = sin2(k dx/2)/(k Ax/~)~, d ecreases fairly rapidly, contributions 
to the particle currents at spatially aliased short wavelengths (k dx > r) are small. 
We neglect the spatial aliases in our analysis but emphasize that in some cases they 
are very important [3]. This approximation is justified a posteriori by the excellent 
agreement of the predictions of the following analytical theory with computer simula- 
tions. 

We linearize and Fourier transform Eqs. (7) and (S), 

Is, = (Kc/w,~)’ wci c-l A”, - S(m/e) wGi Cr , VW 

i sin(w d t/2)(c ot)-l A”, = S(m/e) ~0~~5~ , 02’4 
6, = -S(e/mc) A”, - CO& w4 

6, = iq (~0,~ ot/2)[sin(o At/z)]-1 (SI?,B-lc + a,), (124 
x” = iq(v”$ dt/2)[sin(o dt/2)]-l. We) 

The factor 77 [= sin(w,, dt/2)/(o,, dr/2)] insures that the ions gyrate with correct 
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cyclotron frequency (see the Appendix). Equations (12) are algebraically reduced to 
give 

S2w,i At/2 
?1 sin(w At/2) 

hi A tB2 
’ + cs2 - ‘1 T2 sin2cw At/z) 

E,c Bll [ 1 & = 0. 
mc (13) 

We set the determinant of the matrix in Eq. (13) equal to zero to obtain a biqua- 
dratic dispersion relation for sin(w At/2). There are two simple limiting cases which 
correspond to the numerical simulations we have performed. For gridless linearized 
simulations (Ax = 0) the normal mode frequencies are given by 

sin2(w At/2) = vk2VA2 At2/4, q2c& At2/4, (14) 

where V, = (w,i/w,i) c, the usual Alfvtn velocity. With a spatial grid and 71 z 1, one 
obtains 

sin2(w At/2) = s2K2VA2 At2/4, [l + (1 - s’)“] w$ At2/4. (1% 

In both cases the two solutions of the dispersion relation correspond to the compres- 
sional Alfvtn wave and the cold plasma ion-cyclotron resonance. The relative polariza- 
tion of the fields is deduced by taking the ratio of the appropriate matrix elements in 
Eq. (13); for 7 w S M 1, &./l$, M i sin(w At/Z)/(w,i At/Z). 

Stable wave propagation results when the r.h.s. of Eqs. (14) and (15) are less than 
unity, viz. 

where the effective values of the AlfvCn velocity and the cyclotron frequency are 
defined as having absorbed the appropriate combinations of q and s2 factors. 
Numerical instability results when the r.h.s. of Eqs. (14) and (15) exceed unity. 

Figure 3 shows the results of numerical simulations in which small amplitude 
compressional AlfvCn waves were excited. The dashed line indicates the theoretical 
dispersion relation with Ax = At = 0, while the solid curve gives the dispersion 
relation including both finite At and Ax. Data were obtained from both a fully 
nonlinear code with 7 = 1 and k Ax = ~14, and a linearized gridless code with 
77 3 sin(w,, At/2)/(oci At/2). A broad range of values of wCi At/2 was employed: 
0.01 < wCi At/2 < ~12. We observe excellent agreement between the finite-difference 
modified theory for the algorithm employing conservation of canonical momentum 
and the results of simulation over the entire range of frequencies and wavenumbers 
giving numerically stable propagation. Numerical dispersion becomes appreciable 
only for kV, At/2 + 1. We have also verified that the electric field polarization of the 
waves and the onset of numerical instability are consistent with theory. 

5SI127/3-6 
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FIG. 3. Theoretical dispersion relation for compressional Alfven waves with space-time mesh 
corrections as deduced for the canonical-momentum-conserving algorithm. The dashed line is for 
Ax = At = 0; the solid curve includes the modifications due to finite ditferencing and is the solution 
of sin*(wAt/2) = (k,ffVAAt/2)8, where keff E q lIBk for Ax = 0 (linearized simulation) and keff = 3 k 
for Ax # 0 (fully nonlinear). Simulation data are shown in solid symbols for Ax = 0 and open 
symbols for Ax # 0. 

Our more general multidimensional algorithms can be analyzed similarly. Again 
we consider one-dimensional wave propagation perpendicular to a uniform magnetic 
field in a cold homogeneous plasma. For the coordinate system shown in Fig. 1, the 
linearized equations described Fourier amplitudes derived from Eqs. (9) and (10) are 

COS(w dt/2) J$ = -w,i(m/e)[i(Kc/w,i)2 (e/m)(d t/2) sin-l(w Ll r/2) i$ + SE,], (17a) 

cos(w dt/2) Ey = wci(m/e) SG, , (17’4 

i(c dt/2)-l sin(w dt/2) ZU = IT, , (17c) 

--i sin(w dr/2) Cz = (~0,~ dt/2) cos(w d r/2) Q + (e/m)@ t/2) S& , (174 

-i sin(w dt/2) 6, = -(wCi dt/2) cos(w Lit/2) 5, + (e/m)(Llt/2) R??, . We) 



HYBRID SMULATIONS IN PLASMA 315 

Algebraic reduction of these equations gives 

s2 D 3x = i tan(w At’2) cos*(w At/2) + oci At/2 I 
t$;;w”g;;j [S2 - cos2(w At/Z)]/ E, 

Dz, = --Dm, 
K2C2 

-4 
hi A t/V %i ’ - tan2(w At/2) ’ s”2 1 II 1 4 

= 0. (18) 

Setting the determinant of the matrix in Eq. (18) equal to zero yields a cubic 
equation for tan2(w At/2). For sake of simplicity we consider the limit k Ax -+ 0. We 
obtain the following dispersion relation 

k2c2 
x (Y - 1X1 + yw,2i At2/4) + ~(1 + y& At/4)2 - y2(1 + co:< At2/4)2 = 0, (19) 

Pl 

where y E tan2(o At/2)/(w,, At/2)2. For wCi At/2 < 1 there exist the approximate 
solutions 

tan2(w At/2) M 
I 
(kV, At/2)2, (w,i At/2)2 < 1, 
(1 + k2c2/co;i)-1 (wCi At/2)-2 > 1. (20) 

Thus there is an extra branch at high frequency (w = &n/At). This illustrates the 
chief numerical problem of the leap-frog algorithm. The extra branch emerged in our 
linearized simulations of compressional AlfvCn waves in cold plasma (Fig. 4) as a 
stable oscillation at one-half the sampling frequency for choice of time steps such that 
kV, At, wCi At/2 < 1. Simulations demonstrated that with increasing kV, At the 
phase velocity of the compressional Alfven waves increased, o/k > V, , until onset of 
instability. Simulations using the leap-frog algorithm were numerically unstable for 
kVA At (or wCi A@) 2 1. 

The implicit algorithm resolves the difficulties of the leap-frog scheme by performing 
the temporal average on the r.h.s. of Eq. (9a) instead of the 1.h.s. The cos(o At/2) 
factors on the 1.h.s. of Eqs. (17a) and (17b) now appear on the r.h.s., In place of 
Eq. (18) we obtain 

s2 D 211 = i tank’ 42) 
wci At/2 [ 

1 + hi A@)2 (52 _ II 
tan2(w At/2) I 

0. 
Dw = --D,, K2C2 [l - hi A tN2 $i tan2(w At/2) + s2 1 

(21) 

This gives a biquadratic dispersion relation for tan(w A@), 

y2 - [34 - (Kc/w,~)~ s2 - 2(s - l)] y + (Kc/w,~)~ 3’ + (3” - 1)” = 0, (22) 

where y = tan2 (w At/2)/(0,, At/2)2. Equation (22) has positive real solutions for all 
values of s2 ,< 1 and K2c2/ UJ”,~ . Equation (21) corresponds to Eq. (13) with q = 1 and 
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tan(w d t/2) replacing sin(w At/2). The normal modes for the implicit scheme therefore 
have frequencies given by 

tan’(w At/Z) = L?‘K2VA2 dt2/4, [l + (1 - s’)“] C& dt2/4. (23) 

Thus the implicit algorithm is unconditionally stable and eliminates the spurious 
high frequency branch of the leap-frog scheme. 

The impracticality of the implicit algorithm combined with its obvious advantages, 
as belied by Eq. (23), motivated the introduction of the predictor-corrector scheme, 
Eqs. (9), (10) and (I l), as a compromise. The predictor-corrector algorithm was 

J?IG. 4. Longitudinal electric field E, verses time at a tied position for a compressional Alfv6n 
wave with kVA = wCi and w,& = 0.1. Linearized simulation results using the (a) leap-frog scheme 
(with spurious high frequency oscillation) and (b) predictor-corrector scheme. 
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compared to the earlier schemes by again simulating in linearized, gridless fashion the 
propagation of compressional Alfven waves. With only one full corrector iteration 
at each time step, high frequency oscillations were effectively extinguished; and the 
compressional Alfvtn waves suffered some dissipation (Fig. 4). With increasing 
kV, dt there was a decrease of phase velocity, w/k -C V, , and an increasing amount 
of numerical dissipation. The damping became severe as kV, dt -+ 1, and the 
predictor-corrector algorithm was found to be unstable for kV, At 2 1 or 
wci d t/2 2 1. When wci d t, kV, d t < 0.1 there was little numerical dissipation and 
the theoretical dispersion relation for compressional AlfvCn waves was reproduced 
by the simulations. 

We finish this section by reviewing the results of a warm homogeneous plasma 
analysis of the one-dimensional, canonical mpmentum conserving algorithm. In 
Appendix 2 we extend Langdon’s analysis [3] for electrostatic waves propagating 
perpendicular to a uniform magnetic field to include electromagnetic perturbations 
in the nonradiative and quasineutral limits. We continue to ignore electron inertia and 
temperature. For small amplitude waves propagating in the x direction and magnetic 
field in z we obtain 

[ 
D 3cz D,, -I 
D,z D,, I[ -(iw& A”, 1 = O (24) 

where 

+ (Vci A t/2) cos(w, A t/2) 2 JT(JT-1 + J,+J], (254 

. 2 
D,, = lwpi [ sin(w d t/2) 

woci w At/2 

X 
! 
3% J,.2 sin(w, A t/2) + w 2 siyAe’ (Jr+lJT - J,-,J,) sin(w, At/2) 

+ (r)wci At/2) cos(w, At/2) $f& [+ sin w 

x (J7+1 + JT-I) + 3 Jr(Jr-1 + Jr+,,] /]> (25’3 

x I Jr2 + 2 JAJH - J,,,)] 1, (254 
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e?%i Ll m2 D,, = ~ + ~ 5’ S dV, V,g,(V,) C Il”i J,” - (r/w,i dt/2)2 _ sin2(w, dt/*) w 

2 / kv, sin(k Ax) 
2w k Ax J(J,i, - Jy--1) 

- 2 [JrJvp, - J1JT+l - kz,, sin(k Ax) (Jr+l - JTp1)2]/-j, 
2wci k Ax 

gO(v,) is the normalized distribution function for perpendicular velocities, 
o, = w - rsZ where sin@ At/2) = vwci At/2, and the argument of the Bessel 
functions J&) is given by x = kv,/Q. Use of the identities 

sin(w, At)[sirP(w, At/2) - sin2(w, At/2)]-’ = cot[(w, - wr) At/21 

- cot&o2 + 4 421, 

[J&x) + JT+l(x)12 = (4r2/x2) Jr(x)“, 
JT+dx)’ - Jdx)” = -CWxW/dx) J&d2 

allows some simplification of the matrix elements, Eqs. (25), but is unnecessary for 
purposes of the present discussion. We have again ignored contributions from spatial 
aliases. 

The dispersion relation describing normal modes in the periodic simulation plasma 
is then given by det D = D,,D,, - D,,D,, = 0. Due to the finite ion temperature, 
the cold plasma resonance at &J,~ is replaced by the entire ion Bernstein spectrum and 
its cutoffs and resonances at all ion cyclotron harmonics. The compressional AlfvCn 
wave remains purely transverse for I o/ wci 1 < 1 but is modified by thermal effects. 
The coupling of the electromagnetic and electrostatic branches becomes important 
for finite values of k (v,)/w,~ and u$&k2c2[19]. Callen and Guest [19] have 
described the electromagnetic modifications to certain electrostatic modes. They 
analyze in what circumstances the Bessel function series in D,, and D,, are small 
compared to the remaining E x B terms and find that it is required that rQ < JT2(B) > 
/(w - r1;2) < 1. We make this assumption and also assume that w2 < K2c2 to obtain 

&, - 
sin(w At/z) iw”,i 

awci w At/2 ’ 

and 

The dispersion relation for electrostatic waves then becomes 

L?-2[D,, - D,,D,,D;;] = s-2D,, + aK;j; 2. sin'A;F) = 0. (26) 
oc* 
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The term ,!?-2D3EZ is just the linear ion susceptibility. In the quasineutral approximation 
the vacuum polarization term is omitted, as is the electron polarization term because 
of the neglect of electron inertia. Hence we can view the electromagnetic modikation 
as merely a replacement of the vacuum term equal to unity by [sin(o dt/2)/(w dt/2)] 
(w4pi/S2K2c%$). Electron polarization effects would have introduced an additional 
term of order ~2p&& [19]. 

Langdon [3] has analyzed how temporal aliasing of cyclotron harmonics can lead 
to a numerical instability for waves propagating across the magnetic field. Discrete 
sampling in time acts as a pump with frequency given by 27r/dt which parametrically 
couples the electrostatic modes to themselves. However, the onset of instability is 
quite sensitive to frequency matching conditions, and the instability can be partially 
or completely stabilized by using smooth velocity distribution functions and by 
insuring that wci dt < 1 and (u,)/flx w,i 5 1 [3]. This forces the instability to occur, 
if at all, at high cyclotron harmonic numbers where the smallness of the associated 
Bessel functions in D,, reduces the coupling coefficients and hence growth rates. 
Furthermore, even if there is instability, saturation tends in practice to occur at a 
fairly low level if wci dt Q 1 [3]. Thus our simulation algorithm can successfully 
avoid serious difficulties due to temporal aliasing of the cyclotron harmonics by 
suitable choices of time-step and distribution function. 

4. EXAMPLES OF MICROMSTABILITIES 

This section presents examples of the application of our computer models to the 
study of microinstabilities. We examine three fairly simple instabilities: unstable ion 
Bernstein waves propagating perpendicular to a uniform magnetic field (Dory- 
Guest-Harris modes), the drift-cyclotron-loss-cone mode in local approximation, and 
the Alfven-ion-cyclotron mode. In all cases we find agreement between the frequencies 
and growth rates measured in linearized simulations and those predicted by analytical 
theory. 

1. Dory-Guest-Harris Modes 

The Dory-Guest-Harris instability consists of Bernstein modes which are driven 
unstable by a non-Maxwellian velocity distribution function. The simple case of 
instability with a distribution function of the form g,,(v) = (27r~,O)--~ 6(u, - 0~0) 
6(v ,,) has been extensively studied by Dory et al. [9] and Crawford and Tataronis [20]. 
The dispersion relation for these modes including the lowest order electromagnetic 
modifications [19], but excluding vacuum and electron polarization terms, is given by 
Eq. (26) (with dx = dt = 0), 

(27) 



380 BYERS ET AL. 

where p = kvlO/w,i and k *B, = 0. This can be cast in the form 

where 01= pL2//3, fi = 4m,pw~/Bo2 and Q z w/w,~ . This dispersion relation is valid 
in the limit of p2//3 < milme, o$/w%~ . Crawford and Tataronis have obtained 
numerical solutions for D as a function of p for various parameter values of 01. 
(Crawford and Tataronis considered the purely electrostatic limit, in which case 
01= o~,Jo$). For a given value of wavenumber Q, solution of Eq. (27) demonstrates 
that increased /3 is stabilizing for moderately large /& p 5 1. For j3 > 1 electro- 
magnetic and electrostatic branches become strongly coupled; Eq. (27) ceases to be 
valid. A more general consideration of Eq. (24) is required in which ion contributions 
to D,, 9 Q,, , and D,, in Eqs. (25) cannot necessarily be ignored. Electromagnetic 
ion-cyclotron waves propagating perpendicular to the magnetic field can be driven 
unstable in the high-13 limit. 

Dory-Guest-Harris modes were studied with the linearized, one-dimensional, 
canonical-momentum-conserving code. Finite-difference modifications to the dis- 
persion relation, Eq. (27), are given by Eq. (26). For w dt w O(w,i dr) < 0.1, time- 
step effects are negligible. Because the simulation is linearized and gridless, k Ax + 0, 
there are no spatial grid effects. Consider an example: for p2//3 = 20 and ~1 = 4.5, the 
approximate dispersion relation Eq. (26) predicts that w/wci = 1.28 + i 0.45. 
Linearized simulation gave w/w,~ = 1.25 + i 0.40. For /3 > 1, unstable electro- 
magnetic ion-cyclotron waves were observed as expected. 

2. Drift-Cyclotron-Loss-Cone-Modes 

For simulations of the drift-cyclotron-loss-cone instability, we adopt the local 
approximation, i.e., the density gradient is assumed constant and any variation of the 
mode amplitude in the direction of the density gradient is ignored. As a further 
simplification, we assume that the mode is a flute, k . B, = 0 [13]; and we dispense 
with the self-consistent equilibrium gradient of the magnetic field. For Q/w,, E 
(w + WJJm. 3 klae < 1; k,ai > 1, where a, = (v~~>/w~~; and weak gradients; the 
simplified dispersion relation for this mode is given by 

2 
wpi 1 

- - 2iklL, + ,rrkA3 k 2c2 I 
i!!& Q< c jy dv, Fy$ = 0, 

n o t 
(28) 

where the plasma scale length is defined as L, = (Vln no)-’ and the nondimensional 
frequency is X2i = 521 wci . The first term on the 1.h.s. of Eq. (28) is identical in origin 
to the w4p,/(w,,k2c2) = &$/(&k2c2) term in Eq. (27). These terms arise from con- 
sideration of the electron E x B motion which cross-couples electromagnetic and 
electrostatic field perturbations in a plasma. Vacuum and electron polarization terms 
have again been set equal to zero, which is consistent with our simulation model. The 
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drift-cone mode has frequency w - O(oC,) and is driven unstable by both the loss- 
cone in velocity space and spatial inhomogeneity. 

Because of the loss of the constant vacuum and electron polarization terms, Eq. (28) 
does not accurately describe drift-cone modes at short wavelengths. Solution of 
Eq. (28) predicts that y -+ cc as k, -+ co, contrary to theory retaining the polarization 
terms. However, use of a linearized code allows the selection of a mode with wave- 
number justifying use of Eq. (28), i.e., w~i/k~2C2 = Pi/kL2ai2 > (m,/mi), (c&/w~~) 
both of which are very small compared to unity for mirror plasmas (pi = 87r4Ti/Bo2). 
The neglect of the magnetic field gradient forfeits finite /$ corrections to the dis- 
persion relation which are important for pi 2 1 [13]. However, one of the more 
important corrections can be recovered by a renormalization of the plasma scale 
length, L, + L,[l + +fii(l - Te/Ti)]-l. We emphasize that the gradient of the equili- 
brium magnetic field has been omitted only for sake of simplicity and not as a pre- 
requisite of the simulation model. 

To simulate the drift-cone mode locally with our linearized canonical-momentum- 
conserving one-dimensional code, we artifically model the effect of the density gradient 
in the y direction but allow no variation of the fields and particle orbits in that direc- 
tion. Therefore, canonical y-momentum is conserved within the local approximation. 
The direction of wave propagation is taken to be in the x-direction, and the magnetic 
field is in the z-direction. For sake of simplicity the electrons are again described as a 
cold, massless fluid. Hence the electron fluid velocity is given by V, = cE x z?/&, . In 
the nonradiative and quasineutral limits, Ampere’s law and V * J = 0 become 

kz2& = ~vTc-‘(~,~ + en,I$B;lc), (29) 

ike(Jzi - en,&,B;‘c) + L;‘(Jui -I- en,,l&@) 

= ik,(Jz’ - en&B;*c) + (kg2c/4nL,) A”, = 0. (30) 

The electric field components EZ and L?, are obtained from solution of Eqs. (29) and 
(30). Analogous to Eqs. (7a), (7b), and (7c), the difference equations for the Fourier 
amplitudes of the fields become 

I&” = (B,,/4m,e)(k,2& - 4m-lf,i)*, (314 

E y”+1’2 = (B,/4~~oe)[4nc-1(y,3”‘1’2 + (k2/i 2k,Ln)(d~+1 + &n)], (31b) 

A(n+l) = A:’ + c At $5;+1/2~ 
?I (3lc) 

The dependence of Eq. (3 1 b) on $+l is resolved by simultaneous solution of Eqs. (31~) 
and (31 b) for j?;+lj2 and $+l as functions of A”,” and (jai)n+112. After linearization, 
Eqs. (7c)-(Be) comprise the rest of the algorithm with one exception. In computing the 
ion charge and current densities, the individual particle ions are artificially weighted 
according to their initial y guiding center positions y,,(O) in a manner consistent with 
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the presumed density gradient, i.e., e, m cc (1 + b,,(O) -y(t)] L;l}. We remind the 
reader that the simulation model is local in y, independent of z, Fourier analyzed in x, 
and hence gridless. 

I I I 

80 120 160 200 

k:+ 

FIG. 5. Dispersion relation for the drift-cyclotron-loss-cone instability, (w + ir)/wCc vs k,e a,2/2, 

with 7’, = 0, .&Jai = R = 10, w,& < 0.05, and (a) /Ii = 0.1 or (b) fil = 1.0. The solid and dashed 
curves denote the predictions of analytical theory. The results of linearized simulations using the 
canonical-momentum-conserving algorithm are indicated by the data points. 

L Figure 5 shows the results of linearized simulations of the drift-cone mode for 
woi dt < 0.05, L,/ai = 10, and fii = 0.1, 1. We chose as the velocity distribution 
function the difference of two Maxwellians with a loss cone corresponding to an 
effective mirror ratio equal to 10. Increasing the value of /3$ stabilizes the mode in 
agreement with theory [13, 191. For the chosen values of wgi d t, there is little modifica- 
tion due to the finite time-step; the frequencies and growth rates observed in the 
simulations agree quite well with theory. 

3. Alfv&Ion-Cyclotron Instability 

As a final example of microinstability we consider the AlfvCn-ion-cyclotron mode, 
also known as the electromagnetic ion cyclotron instability. In a high-/3 plasma, 
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AlfvCn-like waves can be destabilized by an ion energy anisotropy with Ti, > Ti,, . 
The most unstable waves propagate parallel to the magnetic field with frequency 
which satisfies w m k,, VA M wci . These modes are thought to play an important role 
in the energy isotropization of astrophysical plasmas with Ti, > Ti,, and high-13 
laboratory plasmas heated by neutral-particle injection perpendicular to a confining 
magnetic field [ Ill. 

We follow the derivation by Davidson and Ogden [l l] of the linear dispersion 
relation describing this instability. However, we assume that the electrons are cold 
and that electron polarization effects and the transverse displacement current are 
negligible. The latter assumptions are well justified for frequencies G’ < w,, , k ,, c. The 
dispersion relation becomes 

0 = D*(k,, , Sz = w + iy) = -k,,Y 7 w;J&o,~ + c&(SZ/k,,vi,,) Z(&*) 

- wZi(l - TiJT~,,)[l + Cft*Z(6i*)I, (32) 

where the +(-) labels refer to waves with right (left) circular polarization, ti* = 
(Q zk ~ciM,,vi, , vi,, 3 (2Ti,,/mi)1/2, Ti,, ,, = (m& r/2), and Z(n is the plasma 
dispersion function 

Z(() = (7~-l/~ Srn dx exp(-x2)/(x - 5). 
-cc 

For purposes of one-dimensional simulation of the Alfven-ion-cyclotron mode we 
take the direction of variation and the external magnetic field to be in z. Anticipating 
future studies of obliquely propagating Alfven-ion cyclotron modes, we employ an 
algorithm which does not require conservation of canonical momentum, viz. we use 
the linearized predictor-corrector version of the leap-frog scheme, Eqs. (9), (10) and 
(11). For k = k,,5, only the z component of the particle position need be calculated. 
The zero order equations are 

(d/d) v(O) = (elmi) v(O) x Boc-’ 

z = z + v(O)t 0 Z’ 

The first order equations for the Fourier amplitudes become 
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FIG. 6. Dispersion relation for the Alfvkn-ion-cyclotron instability, (i w 1 + ir)/w,< vs 1 k,,c i/w,c , 
for pi, = 1, T, = 0, TJT,,, = 10, and w,& = 0.1. The solid and dashed curves denote the 
predictions of analytical theory; the results of linearized simulation using the predictor-corrector 
scheme appear as data points. 

These equations are numerically integrated in the manner of Eqs. (9), (10) and (11). 
Figure 6 displays the results of simulations for pii = 8n12, TiJB02 = 1, C&/C& << 1, 
and T<JTi,, = 10. For w,i dt = 0.1 there is little effect due to finite-differencing in 
time. AlfvCn-cyclotron modes are observed with polarizations, growth rates, and 
frequencies agreeing well with Davidson and Ogden’s theoretical description and the 
solutions of Eq. (32). Linearized simulations with a spatial grid along B, have shown 
that finite plasma length has a stabilizing influence on the AlfvCn-ion-cyclotron mode 
in qualitative agreement with WKB theory [21,22]. 

5. Magnetic Field Cancellation and Electron Return Currents 

Another principal area of application of these simulation techniques is the study 
of neutral beam injection in high-/3 magnetically confined plasmas. Besides the issue 
of microinstability, recently much attention has been attracted by questions 
surrounding the creation of stable field-reversed magnetic-mirror configuration by 
means of neutral-particle injection perpendicular to the external magnetic field. 
Because a self-consistent model of large-orbit particle dynamics and the self-fields of 
the plasma is demanded for studying the approach to and the stability of field-reversed 
configurations, computer simulation is playing an important role in supporting 
analytical theory and experiments. 

The efficiency of magnetic confinement in mirror plasmas can be substantially 
improved by increasing the depth of the magnetic well and hence increasing the mirror 
ratio. This can be achieved by creating a self-magnetic field in a direction opposite to 
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the external confining magnetic field; the self-field serves to locally cancel and perhaps 
even reverse the total magnetic field. Of course a single charged particle gyrating 
around a magnetic field line has a diamagnetic effect. The following simple argument 
illustrates how field cancellation depends on net plasma current within the context 
of the hybrid model presented in this paper. 

The fluid equation of motion for electrons with negligible polarization drift and 
pressure is given by 

0 = --ne(E + V, x Bc-I) + nm,(Vi - V,) v,~. (33) 

Note that this equation remains well-posed for B = 0. If we take the curl of Eq. (33), 
use V x E = -c-l aB/at, assume conditions such that j VV,~ x V2A j < 1 veiV2B j , 
and neglect the transverse displacement current, then 

a&/at = -(ne)-’ [B,(V . Je) - (B + 0) 1,” - (J” . 0) B,] 

+ (vbi/wiJ c2 V’B, + d . (V In n X E). (34) 

We examine Eq. (34) near a minimum of B, at the midplane of a magnetic mirror, 
and for sake of simplicity we assume azimuthal symmetry (a/a0 = 0). In the limit 
that the minimum of B, approaches zero, Eq. (34) becomes 

aB,pt = (V&I”,,) C” V2B, + cE, i?ln(n)/ar. (35) 

E, satisfies the equation V2E, = -aV2 A,/c at = (4rr/c2) aJ,lat, with boundary 
conditions E. = 0 at r = 0 and r = co. The first term on the right side of Eq. (35) 
tends to smooth extrema on the magnetic field: it is positive at a minimum and negative 
at a maximum. The second term on the right can drive the cancellation of the 
magnetic field; without this term there can be no field depression to a null. To see 
this, choose B, (t = 0) > 0. Consider what happens as a diamagnetic current builds 
up. For reasonable density profiles, and Jo increasingly negative in time over a spatial 
domain, the product of the induced electric field E. and the density gradient can be 
negative locally in space. For a ring current, a field null can be achieved inside the 
ring for a plasma density with a local maximum at a smaller radius or on axis. 

In order that there be substantial generation of a self-magnetic field, there must 
evidently be an appreciable plasma current. A potential threat to achieving field 
reversal is the emergence of plasma return currents which cancel the ion currents 
produced by neutral-beam injection and the subsequent charge-exchange and colli- 
sional ionization of the beam. Berk and Pearlstein have analytically calculated the 
plasma return currents for parallel and perpendicular external currents embedded in 
a magnetized plasma whose response is taken to satisfy the zero temperature magneto- 
hydrodynamic equation and Ohm’s law [23]. The prescribed external current is 
assumed small so that a linear analysis can be performed. They find that only for a 
period of time less than or equal to the perpendicular AlfvCn transit time of the 
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system after initiation of the embedded current does a return current cancel the 
perpendicular external current. 

Berk and Pearlstein’s results can be understood as follows. Consider an embedded 
current sheet with magnitude that rises linearly in time, I, = tct. In an initially un- 
disturbed plasma confined between conducting walls, the information that there is a 
rising current transverse to the magnetic field is carried by a compressional AlfvCn 
wave. Ahead of this wave the fluid remains unperturbed. Behind the wave, - VAt < 
x < VAt, there is a constant current density of magnitude J&x, t) = -K/~V~ whose 
integrated current is equal and opposite to the imposed current. Berk and Pearlstein 
find that this consequence of the linearized MHD equations is valid at early times 
before the waves reflect at the plasma boundaries. The situation is sketched in Fig. 7. 

DIAMAGNETIC SIDE PARAMAGNETIC SIDE 

POSITION OF P X-POSITION- 
CURRENT SHEET’ 

FIG. 7. Space-time diagram for Berk-Pearlstein wave. The wave is a compressional perturbation 
of magnetic field lines on the paramagnetic side and a rarefaction on the diamagnetic side. 

With a constant current density, the fluid velocity will vary linearly in time, since 
p,,(aF/,lat) = J,B,c-~ in the linear approximation. The magnetic field of the wave at 
any instant will consist of a linear decrease from the unperturbed value at the wave- 
front on the “diamagnetic” side of the embedded current, followed by a jump upwards 
at the current sheet, and then a linear decrease back to the unperturbed value at the 
opposite traveling wavefront on the “paramagnetic” side. (For axisymmetric ion or 
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showing the effects of current cancelling electron return currents and (b) late times after electron 
return currents have subsided. 





HYBRID SIMULATIONS IN PLASMA 389 

PLASMA 

CURRENT 

AT 

x=Ltz 

tXld81 

FIG. 9-Continued 

electron current rings, the diamagnetic side is always the inside of the ring.) Only after 
the compressional AlfvCn waves have suffered many reflections and interfered with 
one another over many AlfvCn transit times of the system does the electron return 
current subside and does a self-field build up. 

We have tested the results of simulations with our canonical momentum-conserving 
algorithm, Eqs. (7) and (8), against the predictions of Berk and Pearlstein in slab 
geometry with weak perturbations of the magnetic field, ABIB,, < 2 x 10-5. A plot 
of the instantaneous magnetic field at early time is shown in Fig. 8a. The self-field 
of the plasma is seen to have roughly the predicted triangular shape, but with rounded 
peaks and rounded feet. These features are due to the numerical dispersion arising 
from the space-time mesh. The magnetic field at a time after many wave reflections 
have occurred is shown in Fig. 8b and has the characteristics to be expected for 
negligible plasma return current as predicted by Berk and Pearlstein. 

There is a slight difference between the physical circumstances of these simulations 
and the situation considered by Berk and Pearlstein. The simulations have included 
the E x B dynamics of charge neutralizing electrons which accompany the injected 
ions and were neglected in [23]. These electrons are given the same narrow spatial 
profile as the external current. For injected densities less than one-tenth the back- 
ground plasma density, the plasma response is insensitive to the extra electrons. The 
embedded ion current is spread over three simulation cells compared to the total 
plasma length 2L of 64 cells. Berk and Pearlstein assumed an embedded current of 
negligible thickness. 

581/27/3-7 
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A time history of the plasma velocity at a point midway between the current sheet 
and the wall is shown in Fig. 9. The finite time L/2 I’, for the compressional Alfven 
wave to reach this position, followed by the initial linear velocity rise, is clearly 
visible. During this time the vector potential rises quadratically in time. At a time 
L/VA later the reflected wave returns to this position. Behind this wave, J, = 0 from 
the boundary condition that there be no acceleration of fluid into the wall. This means 
that V, and E, are constants at any point in space between the wall and the reflected 
wave. Thus the vector potential should rise linearly with time until another wave 
reflected from the current sheet returns. The expected behavior of the fluid velocity is 
seen between 3 < w,$/2n < 5 in Fig. 9a, and the quadratic variation (1 < w,,t/2n- < 
3) and linear variations of the vector potential are shown in Fig. 9b. 

A plot of the plasma current versus time at x = L/2 is shown in Fig. 9c. High 
frequency noise at high cyclotron frequency harmonics has been filtered out of this 
trace. The important point is that the plasma current continues to grow. The oscillation 
period has been verified to be 2LlV, within 2% . Because of the numerical wave 
dispersion (Fig. 3), some discrepancy is to be expected. The cumulative effect of 
dispersion on integrated quantities such as the vector potential is negligible over-the 
times considered (wcit/2r = 64 with wGi d t = 0.2). For other quantities, such as the 
x velocity and y current, the dispersion and noise build up to appreciable, but tolerable, 
levels. In general, the simulation results agree quite well with analytical theory and 
demonstrate that an ion current perpendicular to the external magnetic field and a 
concomitant diamagnetic self-field can be established. 

6. CONCLUSIONS 

In this paper we have presented a new class of algorithms for performing computer 
simulations of collective plasma behavior at low frequencies. Electrons are represented 
as a fluid and the ions as particles. Maxwell’s equations are solved with the transverse 
displacement current ignored and quasineutrality assumed. Stability of our various 
numerical schemes generally demands that (kV, d t),ff ;5 1 and that wei d t 5 1, 
where the effective Alfven frequency (~zV,),~~ includes modifications due to the space- 
time mesh. Our algorithms are remarkably simple and direct. 

We find our simulations to be fairly efficient. A typical one-dimensional nonlinear 
simulation with 128 spatial grid cells requires 25 x 1O-s set per particle per time step 
for all operations exclusive of input and output on the National Magnetic Fusion 
Energy Computer Center CDC 7600. A typical one-dimensional linearized simulation 
using the predictor-corrector version of the leap-frog method is much slower, 
120 x 1O-6 set per particle per time step. This is because this algorithm must integrate 
both zero and first order equations once each time step for the predictor step and then 
again for the corrector iteration. 

We have used the propagation of small amplitude compressional Alfven waves in 
cold plasma to provide understanding and tests of the various algorithms. Our 
simulations agree extremely well with the results of anlytical theory which includes 
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significant effects due to finite differencing. We have also performed linearized simula- 
tions of three microinstabilities: two essentially electrostatic modes, the Dory-Guest- 
Harris instability and the drift-cyclotron-loss-cone mode; and the AlfvCn-ion-cyclo- 
tron mode which is electromagnetic. Finite-differencing effects are small in these 
simulations, and the simulation results agree with linear analytical theory. The 
generally stabilizing influence of the electromagnetic modifications of the dominantly 
electrostatic modes is an important feature which our simulations quite easily demon- 
strate. We have reprted elsewhere on simulations of the AlfvCn-ion-cyclotron mode in 
which finite plasma effects have a stabilizing effect [21]. To the best of our knowledge, 
simulations of the drift-cyclotron-loss-cone mode, including electromagnetic effects, 
and the Alfvtn-ion-cyclotron mode have not previously been presented in the 
literaturel. In the future, we expect to extend study of these microinstabilities to 
higher dimensions and fully nonlinear investigations, and include finite geometry effects. 

We have also described the application of these simulation models to the study of 
field-reversed magnetic-mirror configurations. Our simulations have verified the 
results of Berk and Pearlstein describing the transient plasma response to a growing, 
sniall amplitude, embedded external current which is perpendicular to the external 
magnetic field. Electron return currents effectively cancel the external current only for 
times up to AlfvCn transit time of a plasma confined between conducting walls, after 
which there is growth of net current and accompanying magnetic field modification. 
The extension of these studies to the simulation of a cylindrical (r - z) reversed 
magnetic field configuration is under way. 

APPENDIX 1: DIRECT INTEGRATION METHOD FOR E AND B 

Drs. J. Denavit and A. Friedman brought to our attention a variation of our general 
multidimensional algorithms (leap-frog, implicit, and predictor-corrector schemes) 
which offers a significant economy in computation. Equations (9) in the text are 
replaced by 

+(En+’ + En) = [cow,fc(V x B) x wci - (net)-‘J x B - (ne)-’ V * P, 

+ v,&$(V x B)ln+l”, 
Bn+V = B--1/2 - c At V x E” 7 

B” = &(Bn+lP + B”-1’2). 

This eliminates the vector potential A as a variable and the necessity of separating Et 
and Ez (taking the curl of the electric field annihilates Ez in Faraday’s law). A savings 
of computer memory and operations count is thus achieved in the leap-frog and 
predictor-corrector simulation codes. 

l Note added in proof. Subsequent to the 6rst submittal of this article, simulations of the Alfvkn- 
ion-cyclotron mode were discussed by T. Tajima, K. Mima, and J. M. Dawson, Whys. Rev. Lett. 
39 (1977), 201. 
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However, these modifications do not fundamentally alter the structure of the field 
equations. The order of spatial differentiation is preserved with -V x B replacing 
V2A in Eq. (9a) and by taking the curl of Eq. (SC). In performing the linear stability 
analysis, we obtain the same dispersion relations as are found in Section 3 except that 
K2 appearing in Eqs. (18), (21), (22) and (23) IS now given by K2 = k2 sin2(k dx)/ 
(k Ax)~. This arises due to spatial grid effects, namely that D2 # (D1)2. As a result 
there is a larger grid effect for the same value of k dx as compared with the algorithms 
in the text for which K2 = k2 sin2(k Ax/2)/(k Ax/~)~. 

APPENDIX 2: NUMERICAL STABILITY ANALYSIS FOR A WARM PLASMA 

In this appendix we present a kinetic description of the waves propagating across 
the magnetic field in a warm homogeneous plasma as simulated by our one- 
dimensional, canonical-momentum-conserving algorithm, Eqs. (7) and (8). In terms of 
Fourier amplitudes, the linearized Maxwell’s equations, Eqs. (7), are 

-io& sin(w At/2) io - 
WWci OJ At/2 

+” + T!p’ = 0, 

The linearized ion current J(l) must be determined from the first order velocity and 
density perturbations. 

The zero order equations of motion deduced from Eqs. (8) are Fourier transformed 
in time to obtain 

40) vy = 40) 
--wcix 2 (A34 

--i sir@ A@) ,p 40) 
coca At/2 = 77v’y > 

(A3c) 

where the effective cyclotron frequency L? is given by sin@ At/2) = yoci Ar/2. For 
choice r] = sin(w,i At/2)/(wci At/z), the ions gyrate with the correct frequency 
52 = wCi . Hence z&O) = uI cos(+ - Lb), UC) = z)~ sin($ - Dt), and x(O) = x, - 
(UJwci) sin(4 - GV), where 4 is th e initial gyrophase and x, is the guiding center 
location. Then use of a Bessel function identity gives 

exp(--iwt + ikx(O)) = exp(ikx,) C J,.(ku,/Q) exp[--ir4 - iw,t], (A4) 

where CO, = w - rsZ. 
The essence of the method of characteristics is the evaluation of the phase of the 

perturbed electromagnetic fields along the unperturbed obrits: 

A,, E, = (L&, , Ez) exp(--iwt + ikx) + C.C. M (& , I&) exp(--iwt + &x(O)) + C.C. (A5) 
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Equation (A4) is then used to represent the perturbed fields with respect to exp(-z&t). 
We represent the orbit modifications similarly, i.e. ZI:‘), ut), a?) = C,. (v”,‘, QT, 9) 
exp(-iw,.t) + c.c.. Using Eqs. (8) and (A5), we obtain after some algebra 

_ r _ i(7pGi At/z) sin(w, Ot/2) - . . 
v, - (7pci At/2)2 - sin2(w, dt/2) ’ exp(zkxc - lr+) 

x 
[ 
w ,J A”, cJ J% kv, sin@ A-4 cz r 

BO ‘B,, 2 k Ax cJy--l - ‘,+l) +] 9 (A64 

dVr = ‘--wciSJ,. exp(ikx, - irc$) $- + 
o (ywT At/2)2 - sin2(w, AI/~) ’ exp(ikxc - jr4) 

(vci 42)” 

x w  J 2, kv, sin@& L 

cz 7 

B O  

cJ 

‘B, 2 k Ax (Jv-1 - Jv+l) +]> (A6b) 

and 

61~ ci A M2 
“’ = - (rlwci At/z)2 _ sinZ(w, At/z) ’ exP(ikxc - jr+) 

Jr+LJT+ 

0 wci 0 

_ kv, sin(k Ax) ( Jrel - JT+l) 11, 
2w,i k Ax 

where the argument of the Bessel functions is given by ku,/L?. 
The perturbed ion currents to first order in perturbed fields can now be calculated 

according to Eq. (8b) and are given by 

J.$’ = en,3 1 d’v go(v) ]vt’ exp(-iwt + ikx”‘) 

+ (@)/no) $ [exp(-iwt + io At/2 + ikx!!‘,),,) 

+ exp(-iwt - iw At/2 + ikx$)]/ + C.C. 6474 

and 

J:’ = en,,!? s d’v go(v)[@ + (n”‘l’/no) v$“] exp(-iwt + ikx”‘) + c.c., (A7b) 

where $0) = xC - (v,/oCi) sin(+ - Qt) and x$,, = X, - (v,/w,J x sin($ - 52t S 
52 At/2) and n(l) = - no &P/&(o) [3]. We next use the expressions for vL”’ and $” 
obtained earlier, and substitute exp(ikx,) = exp(ikx) C,, J,,(kv,/Q) exp(ir’4 - 
ir’ at). We employ the relation J d4 exp[i(Z - m)+] = 27r 6,, in performing the 
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velocity space integrations. The Fourier transformed perturbed ion currents are thus 

i sin(w, Ot/2)(7)wCi LItj2) 
2’ = efloS2 j dvl. “dTo@J 7 [ (r)w,i &/2)2 _ sirP(w, fit/2) 

i(kvl/24(rlwci 42)’ 
T (qwci At/Z)” - sin’(o, dt/2) cos(wV ot’2) 

t %iJ,(J,-1 + J,+d] +j] VW 

and 

(vci WY WvJ24 
+ (7pei Atj2)2 - sin2(o, dt/2) I 

i wcJ (J -l _ J 
’ ’ Tfl 

> E, 
Bo 

+ 
[ 

w ,J (J _ _ J 
ez T T 1 

) / kc sin(k Ax) 
r+ 2 k dx (J~+I - Jr-W--l - J,.;,)] +‘I ] . 

Substitution of Eqs. (A8) into Eqs. (Al) and (A2) gives Eqs. (24) and (25) in the main 
body of the paper. 

We observe that, due to using the particular interpolation and averaging procedure 
for J, indicated in Eq. (8b), there appears in Eq. (A8a) the factor cos(w, dt/2). This 
leads to appreciable smoothing for w, At/2 N a/2 and to a change in sign of the 
plasma current contributed by the rth cyclotron harmonic component of n(l) evi’) for 
particular values of r. 

If Eq. (8b) for J, were replaced by 

Jz(~j)n+1’2 = c S[x, - g(xin + x;+l)] euy2, 

then Eq. (A7a) would become 

Jf’ = en,9 1 d% g,,(v){&’ exp(--iwt + &x’~‘) 

+ p/no> up exp[--iwt + ik(x$ + x!‘i,,)/2]} + C.C. 
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In Eqs. (A8a) and (25) the multiplicative factor cos(o, dt/2) would consequently be 
replaced by unity, and the argument of the tist Bessel function appearing in the 
products of Bessel functions in all terms immediately following would be renormalized, 
kv,/S2 --+ cos(Q At/2) kv,/Q. This would produce a different smoothing of the cyclo- 
tron harmonic components. 
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